
Nick Kostalas
+1-818-326-9683 • nick.kostalas@gmail.com • LinkedIn • Portfolio • San Jose, California

Technical writing sample: summary of security vulnerabilities

Writing prompt:

 In early 2018, researchers announced the discovery of two severe CPU security flaws known as Spectre
and Meltdown. We'd like you to write a medium-length summary—two to three pages—describing
these flaws for a moderately tech-literate audience. For example, you can assume your reader knows
that processors exist and that computers execute code instructions line by line, but not that they know
the details of how information is stored or addressed within a computer program. 

Your summary should expl ain (a) what Spectre and Meltdown are, (b) how they work at a basic level,
and (c) what actions were/are being taken in response. Feel free to use analogies or relatively informal
language - clarity and correctness are the goals here. Please make sure any analogies you use are your
own, however (or are properly attributed). On the technical side, provide as much technical detail as
you're confident that you can correctly provide.

My submission begins on the next page.

tel:1-818-326-9683
mailto:nick.kostalas@gmail.com
https://www.linkedin.com/in/nickkostalas/
https://nickkostalas.com/


Understanding Spectre and Meltdown
By Nick Kostalas
August 2020

Dangerous new security flaws
In January 2018, the public learned of two important new security flaws affecting modern computers. Named
Spectre and Meltdown, these flaws are hard to fix, and they expose nearly every computer on the planet to
attacks that can result in a severe data breach. This article will help you understand how these vulnerabilities
work, what makes them so novel and dangerous, and what's being done to mitigate their impact.

Flaws in the physical device
Spectre and Meltdown are hardware flaws. They exploit features built into the silicon chip at the heart of a
computer: the central processor, or CPU. The processor takes coded instructions from programs located in the
computer's memory, executes the code, and outputs the results. Processors operate much faster than
computer memory can send them instructions, so chip designers build in optimization techniques to make
efficient use of their extra speed. One of these optimization techniques is called speculative execution, and it's
what makes Spectre and Meltdown possible.

Speculative execution defined
When a processor using speculative execution receives a batch of instructions from a program, it looks for
ways to execute the code faster. One method is to guess which way a conditional line of code (like an IF–THEN
statement) will branch, and then calculate the result ahead of time. This is called branch prediction. Another
method is to reorder lines of code so that instructions that are ready to execute are prioritized over
instructions that need to wait for further information. This method is called out-of-order execution. Branch
prediction and out-of-order execution are each a kind of speculative execution, and both methods have proven
so efficient that they're found on practically every CPU manufactured since around 1995.

Speculative execution breaks the rules
The flaw in processor design that Spectre and Meltdown take advantage of is this: in order to maximize speed
gains, speculative executions are allowed to break the rules. In normal, non-speculative performance, when a
processor tries to execute a line of code that uses an illegal variable or requests access to restricted data, the
execution fails—it's canceled before it can cause an error or access secret data. But during speculative
execution, the processor is allowed to calculate a result using an illegal variable, and will succeed in
temporarily accessing restricted data.

Hackers use the cache as a back door
The processor doesn't completely abandon all security measures: after a speculative execution produces its
results, but before those results are ever output from the CPU, the processor checks to see if it broke any rules.
If it did, it discards the results of any illegal calculations. This prevents any restricted data from being sent
directly to the user or the program. But there's a big hole in this plan: when a speculative execution accesses
restricted data, it stores that data in the cache. When the processor discards the results of an illegal operation,
the data is wiped from the CPU—but it remains in the cache.



Indirect attacks reveal hidden data
Users and programs can't take restricted data directly from the cache, but an attacker can use indirect
methods to learn what's inside. One such method is called a timing attack. A timing attack exploits the fact
that data stored inside the cache can be retrieved measurably faster than data stored in main memory (where
all data is kept by default). By asking the computer to retrieve different pieces of data in sequence, and taking
note of which data arrives in much less time than the rest, an attacker can easily see which of those pieces of
data came from the cache. If the attacker has caused a piece of restricted data, such as a password, to be
stored in the cache, they can recover it quickly and accurately with a timing attack.

Basic structure of an attack
Putting it all together, an attack using Spectre or Meltdown might look like this:

1. The attacker uses speculative execution to force the CPU to access restricted data.
2. The CPU discards the data, withholding it from the user—but leaving a trace in the cache.
3. The attacker then uses indirect methods to recover the data from the cache.

Spectre is harder to fix
Compared to Meltdown, Spectre attacks are more difficult to carry out, and expose a smaller portion of the
computer's memory. Spectre can access all restricted data within the target program's memory, which is a big
problem, but the problem stops there—Spectre can't steal secrets from other programs in the same system.
However, researchers have found more than a dozen different ways to put together a Spectre attack, each
requiring a different security defense. This makes it particularly hard to fix.

Meltdown exposes more data
By contrast, Meltdown attacks are easier to carry out, and they expose a much greater portion of the
computer's memory. Meltdown allows the attacker to ignore a foundational principle of computer security
called address space isolation, which is used to designate which parts of memory a given user or program has
permission to access. By breaking this security feature, Meltdown gives the attacker access to all data within
the kernel—the part of a computer with full access to, and full control over, all data in the entire system.

A hard problem to solve
Taken together, Spectre and Meltdown are a serious and persistent threat to modern data security. The feature
they exploit—speculative execution—is found in almost every modern computing device, and is considered to
be indispensable. Hardware fixes are not yet feasible, while software fixes are incomplete and tend to
significantly reduce processing speed. It will take years to eliminate the Spectre and Meltdown vulnerabilities
from newly-manufactured computer chips, and devices with the flaws already built in might never be
completely protected against them.

First attempts to defend against the attacks
In late 2017, before the public learned of the existence of Spectre and Meltdown, chip manufacturers and
software companies began releasing defensive patches. The patches have succeeded in mitigating some of the
impact of these vulnerabilities, but they don't represent a complete solution. Researchers have proposed more
comprehensive fixes, some of which have been implemented, but many of which are still in development more
than two years after the discovery of the flaws.



Current proposals to address the flaws
Some of the proposed fixes aim to prevent attackers from loading restricted data into the cache; others make it
more difficult for attackers to recover that data from the cache. For example, most operating systems now use
a technique that greatly reduces the amount of kernel space accessible to an unprivileged user. This is an
important safety measure, but it comes at a significant cost to processor speed, and it helps only against
Meltdown attacks. Many browsers have implemented changes that reduce the user's ability to finely measure
processor response times, making it more difficult to probe the cache with a timing attack. Other proposals
include compartmentalizing the cache in such a way that limits the ability of programs to access data that
doesn't belong to them.

An ongoing issue
Spectre and Meltdown shocked the computer security world when they were revealed in 2018. The stark truth
is that some of the most important advances in processor speed in the last quarter century have come at the
expense of some of the most foundational concepts of data security—and because it took us decades to figure
this out, we find ourselves in a highly compromised position today. A robust solution to the pervasive
vulnerability caused by Spectre and Meltdown might be possible, but as of today, we aren't close to finding it.


